Question has a problem.
It should be
(1−x2)yn+2−(2n+1)xyn+1−(n2+m2)yn=0It should be y=emsin−1x
Differentiating wrt x
y1=emsin−1x⎛⎜
⎜
⎜
⎜⎝m(1−x2)12⎞⎟
⎟
⎟
⎟⎠
⇒y1(1−x2)12=my
⇒y12(1−x2)=m2y2
Now, again differentiating wrt x,
2y1(1−x2)y2−(2x)y12=2m2yy1
⇒y2(1−x2)−xy1−m2y=0(y1≠0)−(1)
Now, general Lebniz rule is that,
(fg)n(x)=∑nk=0(nk)f(n−k)(x)g(k)(x)
(nk)=n!k!(n−k)!=nCk
So, by differentiating equation (1), n times and applying Leibniz rule.
yn+2(1−x2)−nC1yn+1(−2x)+nC2yn(−2)−{yn+1x+nC1yn}−m2yn=0
⇒(1−x2)yn+2−(2n+1)xyn+1−(n(n−1)+n+m2)yn=0
∴(1−x2)yn+2−(2n+1)xyn+1−(n2+m2)yn=0