The correct option is B −yx
dydt=esin−1(t2−1)×1√1−(t2−1)2×2t
dxdt=esec−1(1t2−1)×1(1t2−1)√(1t2−1)2−1×−2t(t2−1)2
dxdt=esec−1(1t2−1)×1(1t2−1)√1−(t2−1)2(t2−1)2×−2t(t2−1)2
dxdt=esec−1(1t2−1)×(t2−1)2√1−(t2−1)2×−2t(t2−1)2
⇒dydx=−yx
Alternate:
y=esin−1(t2−1)
x=esec−1(1t2−1)=ecos−1(t2−1)
Now, xy=esin−1(t2−1)⋅ecos−1(t2−1)
=esin−1(t2−1)+cos−1(t2−1)=eπ/2
i.e, xy=eπ/2
Differentiating wrt x, we get
y+xdydx=0
⇒dydx=−yx