The correct option is A d2ydx2+2dydx+5y=0
y=e−xcos2x
Differentiating both sides
dydx=cos2x(−e−x)+e−x(−2sin2x)
⇒dydx=−y−2e−xsin2x ⋯(1)
Again, differentiate the above equation
d2ydx2=−dydx−[4e−xcos2x−2e−xsin2x]
⇒d2ydx2=−dydx−[4y−2e−xsin2x]
⇒d2ydx2=−dydx−[5y−y−2e−xsin2x]
Substitute the value in the equation (1)
d2ydx2=−dydx−[5y+dydx]
⇒d2ydx2+2dydx+5y=0