Ify=bcoslogxnn, then dydx is equal to ?
-nbsinlogxnn
nbsinlogxnn
(-nbx)sinlog(xn)n
none of these
Explanation for the correct answer:
To find the value of dydx :
Given,
y=bcoslogxnn
Evaluate the given function
y=bcosnlogxn [∵logxn=nlogx]
Now differentiate the obtained function with respect to x,
dydx=-bsinnlogxn×n1x/n×1n⇒dydx=-bnxsinnlogxn⇒dydx=-bnxsinlogxnn
Hence, the correct option is C.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to