If y=logxetanx+x2 , then dydx is equal to?
etanx+x21x+sec2x+xlogx
etanx+x21x+sec2x-xlogx
etanx+x21x+sec2x+2xlogx
etanx+x21x+sec2x-2xlogx
Explanation for the correct option:
To find the value of dydx :
Given,
y=logxetanx+x2
Now, differentiate the given function with respect to x,
Then,
dydx=1xe(tanx+x2)+logxe(tanx+x2)sec2x+2x∵ddxu.v=udvdx+vdudv,dtanxdx=sec2x=e(tanx+x2)+1x+sec2x+2xlogx
Hence, the correct option is C.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to