If y=(x+1)(x+2)(x+3)(x+4)(x+5), then the value of dydx at x=0is equal to
742
472
374
274
Explanation for the correct option.
Given that, y=(x+1)(x+2)(x+3)(x+4)(x+5)
Differentiate both sides using product rule i.e;
duvdx=udvdx+vdudx
we have,dydx=(x+2)(x+3)(x+4)(x+5)+(x+1)(x+3)(x+4)(x+5)+(x+1)(x+2)(x+4)(x+5)+(x+1)(x+2)(x+3)(x+5)+(x+1)(x+2)(x+3)(x+4)Now substitute x=0 in dydxwe have:
dydx=(2×3×4×5)+(1×3×4×5)+(1×2×4×5)+(1×2×3×5)+(1×2×3×4)=120+60+40+30+24=274 Hence, option D is correct.