If y=e2x+e-2xe2x-e-2x, then dydx=?
-8e2x-e-2x2
8e2x-e-2x2
-4e2x-e-2x2
4e2x-e-2x2
Explanation for the correct option:
Finding the value of dydx:
Given,
y=e2x+e-2xe2x-e-2x
Now differentiate with respect to x.
dydx=2e2x-2e-2xe2x-e-2x-e2x+e-2x2e2x+2e-2xe2x-e-2x2[∵ddx(uv)=u'v-v'uv2,d(ex)dx=ex]=2e2x-e-2xe2x-e-2x-2e2x+e-2xe2x+e-2xe2x-e-2x2=2e4x-e0-e0+e-4x-e4x+e0+e0+e-4xe2x-e-2x2=2e4x-2+e-4x-e4x-2-e-4xe2x-e-2x2=2-2-2e2x-e-2x2=-8e2x-e-2x2
Hence, the correct option is (A).