If y=ex+e-xex-ex, then dydx is equal to
sech2x
cosech2x
-sech2x
-cosech2x
Finding the derivative:
Given that, y=ex+e-xex-ex
Divide numerator & denominator by 2.
y=ex+e-xex-ex=ex+e-x2ex-ex2
Now we know that, coshx=ex+e-x2,sinhx=ex-e-x2.
⇒y=coshxsinhx⇒y=cothx
Now differentiate both sides with respect to x we have:
dydx=-cosech2x[dydx=-cosech2x]
Hence, option (D) is correct.
If tanθ+secθ=ex, then cosθ equals