wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=f(x) and y=g(x) are symmetrical about the line x=α+β2, then βαf(x)g(x)dx is equal to

A
βαf(x)g(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
βαf(x)g(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12βα(f(x)g(x)f(x)g(x))dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12βα(f(x)g(x)+f(x)g(x))dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 12βα(f(x)g(x)+f(x)g(x))dx
f(x)=f(α+βx)f(α)=f(β)
and g(x)=g(α+βx)g(α)=g(β)

I=βαf(x)g(x)dx (1)=f(x)g(x)|βαβαf(x)g(x)dx=[f(β)g(β)f(α)g(α)]βαf(x)g(x)dx
I=βαf(x)g(x)dx
Also, since f(x)=f(α+βx)
I=βαf(x)g(x)dx (2)

From (1)+(2),
2I=βαf(x)g(x)dx+βαf(x)g(x)dxI=12βα(f(x)g(x)+f(x)g(x))dxI=12βα(f(x)g(x)f(x)g(x))dx
{f(x)=f(α+βx)}

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon