The correct options are
A f′(x)=f(x)+2xf2(x)f2(x)+x
B f′(x)=1+2xf(x)2f(x)−x2
C f′(1)=1+2√5
D f′(1)=1−2√5
y2−x2y=x ....(1)
2yy′−x2y′−2xy=1
y′(2y−x2)=1+2xy
⇒y′=1+2xy2y−x2
⇒f′(x)=1+2xf(x)2f(x)−x2 .....(2)
Hence, option A is correct.
Multiplying an dividing numerator and denominator (2) by f(x)
⇒f′(x)=f(x)+2xf2(x)2f2(x)−x2f(x)
Hence, option B is correct.
Now, y2−x2y−x=0
y=x2±√x4+4x2
y′=12(2x±4x3+42√x4+4x)
y′=x±x3+1√x4+4x
⇒y′=1±2√5
Hence, option C and D are correct.