If y=f(x)=ax−bbx−a, show that x=f(y).
We have, y=f(x)=ax−bbx−a ⇒y=ax−bbx−a ⇒y(bx−a)=ax−b ⇒xyb−ay=ax−b ⇒xyb−ax=ay−b ⇒x(by−a)=ay−b ⇒x=ay−bby−a ⇒x=f(y)
y= f(x)= ax-b/bx-a, show that x=f(y)