If y=fx2+2 and f'(3)=5, then dydxat x=1 is
5
25
15
10
Finding the derivative:
Given that, y=fx2+2 and f'(3)=5.
Differentiate y with respect to xusing chain rule.
⇒dydx=f'x2+2·2x
At x=1
dydx=f'1+2·2=2f'(3)=2·5=10
Hence, option D is correct.