We see the angles in the trigonometric functions as 750∘ & 1500∘. So let's assume θ=750∘, which would make 2θ=1500∘ and see if we can simplify the expression first before jumping on to calculating it's value.
∴y=sin22θ+4sin4θ−4sin2θcos2θ4−sin22θ−4sin2θ⇒y=(2sinθcosθ)2+4sin4θ−4sin2θcos2θ4−(2sinθcosθ)2−4sin2θ⇒y=sin4θ1−sin2θcos2θ−sin2θ⇒y=sin4θ(1−sin2θ)−sin2θcos2θ⇒y=sin4θcos2θ(1−sin2θ)⇒y=sin4θcos4θ⇒y=tan4θ
Now since θ=750∘, all we need is the value of tan750∘.
tan750∘=tan(720∘+30∘)=tan30∘=1√3
∴y=tan4750∘=(1√3)4=19∴9y=1