If y=sin(x+9)cos x, then dydx at x=0 is
cos 9
y=sin(x+9)cos x
Differentiating both sides with respect to x, we get
dydx=cos x×ddxsin(x+9)−sin(x+9)×ddxcos xcos2x (Quotient rule)
=cos x×cos(x+9)−sin(x+9)×(−sin x)cos2x=cos(x+9)cos x+sin(x+9)sin xcos2x
=cos(x+9−x)cos2x=cos 9cos2x
Putting x = 0, we get
(dydx)x=0=cos 9cos20=cos 9 (cos 0=1)
Thus ,dydx at x=0 is cos 9