The correct option is C y
y=x1!+x22!+x33!+...
Differentiating both sides with respect to x, we get
dydx=ddx(1+x1!+x22!+x33!+...)
=ddx(1)+ddx(x1!)+ddx(x22!)+ddx(x33!)ddx(x44!)+....
=ddx(1)+11!ddx(x)+12!ddx(x2)+13!ddx(x3)+14!ddx(x4)+...
=0+111×1+12!×2x+13!×3x2+14!×4x3+...
(y=xn⇒dydx=nxn−1)
=1+x1!+x22!+x33!+... [nn!=1(n−1)!]
=y
∴dydx=y
Hence, the correct answer is option (c).