If y is a function of x given by ydx+y2dy=xdy where y>0 and y(1)=1, then y(−3) is:
If
y is a function of x given by ydx+y2dy=xdy where
y>0 and y(1)=1
ydx−xdy=−y2dy
d(xy)=ydx−xdyy2
d(xy)=−dy
Integrating with respect to x we get,
xy=−y+c
We have when x=1, we get y=1
So, 1=−1+c
c=2
x=−y2+2y
When x=−3,
y2−2y−3=0
y=−1 and y=3 as y>0.
Hence, y=3