If y=(A+Bx)emx+(m−1)−2ex then d2ydx2−2mdydx+m2y is equal to
y=(A+Bx)emx+(m−1)−2ex
A,B and m are constant
differentiating on both sides w.r.t x
dydx=B.emx+m(A+Bx)emx+ex(m−1)2
dydx=B.emx+m((A+Bx)emx+ex(m−1)2)−mex(m−1)2+mex(m−1)2
dydx=B.emx+my−ex(m−1)
again differentiating on both sides
d2ydx2=B.memx+mdydx−ex(m−1)
=mdydx+B.memx−mexm−1+m2+mexm−1−m2−exm−1
=mdydx+m(Bemx+my−exm−1)+ex(m−1m−1)−m2y
∴d2ydx2=mdydx+mdydx+ex−m2y
∴d2ydx2−2mdydx+−m2y=ex