if y=(log23)(log34)....(log3132), then
Let y=(log23)(log34)(log45)…(log3132)
Then, 2y=2((log23)(log34)(log45)…(log3132))
By laws of exponents and the definition of a logarithm,
2((log23)(log34)(log45)…(log3132))
=(2(log23))((log34)(log45)…(log3132))
=3((log34)(log45)…(log3132))
=(3(log34))((log45)…(log3132))
=4((log45)…(log3132)) and so on
=31(log3132)=32
∴2y=32
y=5