The correct option is A 8(4+π2)
y=logsinxlogcosx.logcosxlognx+u=sin−12x1+x2
y=logsinxlognx+sin−12x1+x2
Let u=logsinxlognx,v=2x1+x2
⇒y=u+v[dydx]π/2=[dudx]π/2+[dvdx]π/2...(1)
u=logsinxlognx⇒dudx=(lognx)cotx−logsinxx(lognx)2
∴[dudx]x=π/2=0
v=sin−1(2x1+x2)
let x=tanθ
∴v=sin−1(sin2θ)2θ=2tan−1x
∴dvdx=2x1+x2∴[dvdx]x=π/2=21+(π2/4)=8π2+4