wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=[log(x+x2+1)]2.
Prove that (1+x2)d2ydx2+xdydx=2.

Open in App
Solution

Given,

y=[log(x+x2+1)]2

dydx

substitute u=log(x+x2+1)

dydx=2log(x+x2+1)x2+1

d2ydx2

=ddx⎜ ⎜2log(x+x2+1)x2+1⎟ ⎟

d2ydx2=2(x2+1xlog(x+x2+1))(x2+1)x2+1

Given,

(1+x2)d2ydx2+xdydx

substituting the above values, we get,

=(1+x2)⎜ ⎜2(x2+1xlog(x+x2+1))(x2+1)x2+1⎟ ⎟+x⎜ ⎜2log(x+x2+1)x2+1⎟ ⎟

=(1+x2)⎜ ⎜21+x22xlog(x+x2+1)(1+x2)x2+1⎟ ⎟+2xlog(x+x2+1)x2+1

=22xlog(x+x2+1)x2+1+2xlog(x+x2+1)x2+1

=2

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon