wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(logx)cosx+x2+1x21, find dydx

Open in App
Solution

y=(logx)cosx+x2+1x21

Let u=(logx)cosx and v=x2+1x21
dydx=dudx+dvdx

We have u=(logx)cosx and v=x2+1x21

logu=cosxlogx and v=x2+1x21

1ududx=cosxxlogxsinx and dvdx=(x21)ddx(x2+1)(x2+1)ddx(x21)(x21)2

dudx=u[cosxxlogxsinx] and dvdx=(x21)(2x)(x2+1)(2x)(x21)2

dudx=(logx)cosx[cosxxlogxsinx] and dvdx=2x(x21x21)(x21)2

dudx=(logx)cosx[cosxxlogxsinx] and dvdx=4x(x21)2

We have dydx=dudx+dvdx
dydx=(logx)cosxcosxx(logx)cosxlogxsinx4x(x21)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon