If y(n)=exex2...exn,0<x<1 then limn→∞d y(n)dx at 12 is
y(n)=ex+x2+...+xn=ex(1−xn)1−x
So dy(n)dx=ex(1−xn)1−x×ddx(x(1−xn)1−x)
limn→∞dy(n)dx=limn→∞ex1−x−xn+11−xddx[limn→∞x1−x−xn+11−x]
=exdx×ddx(xdx)=ex1−xddx(−1+11−x)
=ex1−x.ddx1(1−x)2
∵ for x∈(0,1);xn→0
∴limn→∞xn+11−x=0
⇒limn→∞(dy(n)dx)x=12=4e