y=(sin−1x)2∴(dydx)=2sin−1x(1√1−x2)∴(d2ydx2)=2⎡⎢ ⎢ ⎢ ⎢⎣((1√1−x2)×√1−x2−sin−1x(12√1−x2)×−2x(1−x2))⎤⎥ ⎥ ⎥ ⎥⎦=(21−x2)(1+(xsin−1x√1−x2))∴LHS=(1−x2)(d2ydx2)−x(dydx)=2(1+(xsin−1x√1−x2))−x2sin−1x(1√1−x2)=2