wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(sinx)cosx+(cosx)sinx,finddydx

Open in App
Solution

We have,

y=(sinx)cosx+(cosx)sinx

Taking log both side and we get,

logy=log(sinx)cosx+log(cosx)sinx

Now,

logy=cosx.logsinx+sinx.logcosx

On differentiating with respect to x and we get,

ddxlogy=cosxddxlogsinx+logsinxddxcosx+sinxddxlogcosx+logcosxddxsinx

1ydydx=cosx1sinxcosx+logsinx(sinx)+sinx1cosx(sinx)+logcosxcosx

1ydydx=cos2xsinxsinxlogsinxsin2xcosx+cosxlogcosx

1ydydx=cos2xsinxsin2xcosxsinxlogsinx+cosxlogcosx

1ydydx=cos2xsinxsin2xcosx+cosxlogcosxsinxlogsinx

1ydydx=cos3xsin3xsinxcosx+log(cosx)cosxlog(sinx)sinx

1ydydx=cos3xsin3xsinxcosx+log(cosx)cosx(sinx)sinx

dydx=y[cos3xsin3xsinxcosx+log(cosx)cosx(sinx)sinx]

dydx=(sinx)cosx+(cosx)sinx[cos3xsin3xsinxcosx+log(cosx)cosx(sinx)sinx]

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon