We have,
y=(sinx)cosx+(cosx)sinx
Taking log both side and we get,
logy=log(sinx)cosx+log(cosx)sinx
Now,
logy=cosx.logsinx+sinx.logcosx
On differentiating with respect to x and we get,
ddxlogy=cosxddxlogsinx+logsinxddxcosx+sinxddxlogcosx+logcosxddxsinx
⇒1ydydx=cosx1sinxcosx+logsinx(−sinx)+sinx1cosx(−sinx)+logcosxcosx
⇒1ydydx=cos2xsinx−sinxlogsinx−sin2xcosx+cosxlogcosx
⇒1ydydx=cos2xsinx−sin2xcosx−sinxlogsinx+cosxlogcosx
⇒1ydydx=cos2xsinx−sin2xcosx+cosxlogcosx−sinxlogsinx
⇒1ydydx=cos3x−sin3xsinxcosx+log(cosx)cosx−log(sinx)sinx
⇒1ydydx=cos3x−sin3xsinxcosx+log(cosx)cosx(sinx)sinx
⇒dydx=y[cos3x−sin3xsinxcosx+log(cosx)cosx(sinx)sinx]
⇒dydx=(sinx)cosx+(cosx)sinx[cos3x−sin3xsinxcosx+log(cosx)cosx(sinx)sinx]
Hence, this is the answer.