wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(tanx)(tanx)(tanx), then at x=π4, the value of dydx=

Open in App
Solution

Now consider: y=f(x)g(x)

ln(y)=g(x)ln(f(x))

1ydydx=g(x)f(x)f(x)+g(x)ln(f(x))

dydx=y[g(x)f(x)f(x)+[g(x)ln(f(x))]

dydx=f(x)g(x)[g(x)ln(f(x))+g(x)×f(x)f(x)]
We have, y=tan(x)tan(x)tan(x)
where:
f(x)=tan(x)
f(x)=sec2(x)
g(x)=tan(x)tan(x)
g(x)=tan(x)tan(x)[sec2(x)ln(tan(x))+tan(x)×sec2(x)tan(x)]
=tan(x)tan(x)[sec2(x)ln(tan(x))+sec2(x)]
Now tan(π/4)=1 and sec(π/4)=2
Therefore
f(π/4)=1
f(π/4)=2
g(π/4)=11=1
g(π/4)=11(2ln(1)+2)=2
And so dydx at π4 is dy/dx=f(π/4)g(π/4)[g(π/4)ln(f(π/4))+g(π/4)×f(π/4)f(π/4)]
dydx=11[2ln(1)+1×21]
dydx=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon