If y=(tanx)(tanx)(tanx), then at x=π4, the value of dydx=
Open in App
Solution
Now consider: y=f(x)g(x)
⇒ln(y)=g(x)ln(f(x))
⇒1ydydx=g(x)f′(x)f(x)+g′(x)ln(f(x))
⇒dydx=y[g(x)f′(x)f(x)+[g′(x)ln(f(x))]
⇒dydx=f(x)g(x)[g′(x)ln(f(x))+g(x)×f′(x)f(x)] We have, y=tan(x)tan(x)tan(x) where: f(x)=tan(x) f′(x)=sec2(x) g(x)=tan(x)tan(x) g′(x)=tan(x)tan(x)[sec2(x)ln(tan(x))+tan(x)×sec2(x)tan(x)] =tan(x)tan(x)[sec2(x)ln(tan(x))+sec2(x)] Now tan(π/4)=1 and sec(π/4)=√2 Therefore f(π/4)=1 f′(π/4)=2 g(π/4)=11=1 g′(π/4)=11(2ln(1)+2)=2 And so dydx at π4 is dy/dx=f(π/4)g(π/4)[g′(π/4)ln(f(π/4))+g(π/4)×f′(π/4)f(π/4)] ⇒dydx=11[2ln(1)+1×21] ∴dydx=2