The correct option is D (xdydx−y)2
∵y=ln(xa+bx)x=x(ln x−ln(a+bx))
or (yx)=ln x−ln(a+bx)
Differentiating both sides w.r.t.x,then
xdydx−y.1x2=1x−ba+bx=ax(a+bx) ⋯(i)
or (xdydx−y)=(axa+bx)
Again taking logarithm on both sides, then
ln(xdydx−y)=ln (ax)−ln(a+bx)
Differetiating both sides w.r.t.x, then
xd2ydx2+dydx−dydx(xdydx−y)=1x−ba+bx=ax(a+bx)=(xdydx−y)x2 [From Eq.(i)]or x3d2ydx2=(xdydx−y)2