No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x(tan−1√1+x2)⋅(2+x2)⋅√1+x2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1(tan−1√1+x2)⋅(2+x2)⋅√1+x2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x(tan−1√1+x2)⋅(1+x2)⋅√1+x2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bx(tan−1√1+x2)⋅(2+x2)⋅√1+x2 y=ln(tan−1√1+x2)
On differentiation we get, dydx=ddx(ln(tan−1√1+x2))=1tan−1(√1+x2)ddx(tan−1(√1+x2))=1tan−1(√1+x2)⋅11+(√1+x2)2ddx(√1+x2)=1(tan−1√1+x2)⋅11+(√1+x2)2⋅12√1+x2⋅ddx(x2)=1(tan−1√1+x2)⋅11+(√1+x2)2⋅12√1+x2⋅2x=x(tan−1√1+x2)⋅(1+(√1+x2)2)⋅√1+x2=x(tan−1√1+x2)⋅(2+x2)⋅√1+x2