If y=logcosxsinx, then dydx is equal to
[cotxlogcosx+tanxlogsinx)](logcosx)2
[tanxlogcosx+cotxlogsinx)](logcosx)2
[cotxlogcosx+tanxlogsinx)](logsinx)2
none of these
Explanation for the correct option.
Find the dydx
Given that, y=logcosxsinx
Using the property of logarithmic, logba=logalogb.
y=logsinxlogcosx
Now using the quotient rule for differentiation i.e; duvdx=vdudx-udvdxv2dydx=[logcosx×1sinx×cosx-logsinx×1cosx×(-sinx)](logcosx)2=[cotxlogcosx+tanxlogsinx)](logcosx)2Hence option A is correct.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to