wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=log(xa+bx)x, prove that x3d2ydx2=(xdydxy)2

Open in App
Solution

y=log(xa+bx)xy=xlog(xa+bx)
dydx=log(xa+bx)+x×(a+bx)x×[(a+bx)bx(a+bx)2]
dydx=yx+a+bxbx(a+bx)
dydx=yx+a(a+bx)d2ydx2=⎢ ⎢ ⎢dydxxyx2⎥ ⎥ ⎥+ddx[aa+bx]
d2ydx2=⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥ab(a+bx)2
from (1) (xdydxy)x=a(a+bx)
d2ydx2=⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥⎢ ⎢ ⎢xdydxyx⎥ ⎥ ⎥b(a+bx)
d2ydx2=⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥(bx+aa)(a+bx)
d2ydx2=⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥×[1a(a+bx)]
d2dx2=⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥[11+aa+bx]
d2ydx2=⎢ ⎢ ⎢xdydxyx2⎥ ⎥ ⎥⎢ ⎢ ⎢xdydxyx⎥ ⎥ ⎥⎢ ⎢ ⎢a(a+bx)=xdydxyx⎥ ⎥ ⎥
x3d2ydx2=(xdydxy)2







flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon