wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=log((x+1)1(x+1)+1)+x(x+1) the by using substitution x=tan2θ,y reduces to

Open in App
Solution

y=log(x+11x+11)+xx+1
Given:x=tan2θ
y=log(tan2θ+11tan2θ+11)+tan2θtan2θ+1
We know that 1+tan2θ=sec2θ
y=log(sec2θ1sec2θ1)+tan2θsec2θ
y=log(secθ1secθ+1)+tanθsecθ
y=log(1cosθ1+cosθ)+sinθcosθ1cosθ
We know that 1+cosθ=2cos2θ2 and 1cosθ=2sin2θ2
y=logsin2θ2cos2θ2+sinθ
y=2logtanθ2+sinθ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon