If y=logsinx2,0<x<π2, then dydxat x=π2 is
0
1
π4
π
Find the dydx:
Given that, y=logsinx2,0<x<π2
Differentiate y with respect to x.
dydx=1sinx2cosx22x=2xcotx2Put x=π2dydx=2(π2)cotπ4=π \\Hence option D is correct.
If y=|cos x|+|sin x| then dydx at x=2π3 is:
If f(x, y) = 0 be the solution of differential equation (2y cosec 2x + ln cot y)dx + (ln tan x - 2x cosec 2y)dy = 0 such that f(π4,π2)=0
If ∫∞0(5π4,2017π4)cos xxdx=π2,then∫∞01x(1−sin2x)32dx is equal to