wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=log1+tanx1tanx, prove that dydx=sec2x.

Open in App
Solution

Now,
y=log1+tanx1tanx
or, y=12log(1+tanx)(1tanx)
or, y=12(log(1+tanx)log(1tanx))
Now differentiating both sides with respect to x we get,
dydx=12(sec2x1+tanxsec2x1tanx)
or, dydx=12(sec2x1+tanx+sec2x1tanx)
or, dydx=12(2sec2x1tan2x)
or, dydx=(1+tan2x1tan2x)
or, dydx=1cos2x
or, dydx=sec2x.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon