wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=logacosxbsinxacosx+bsinx, prove that dydx=aba2cos2xb2sin2x.

Open in App
Solution

y=log(acosxbsinxacosx+bsinx)1/2=12log(acosxbsinxacosx+bsinx)
y=12[log(acosxbsinx)log(acosx+bsinx)]
dydx=12[1(asinxbcosx)acosxbsinx1.(asinx+bcosx)(acosx+bsinx)]
dydx=12[(asinx+bcosx)(acosx+bsinx)(acosxbsinx)(bcosxasinx)a2cos2xb2sin2x]
12[2absin2θ2abcos2xa2cos2xb2sin2x]=12[2ab(sin2x+cos2x)a2cos2xb2sin2x]]
dydx=2ab2(a2cos2xb2sin2x)=aba2cos2xb2sin2x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon