If y=logtanx, then the value of dydxis:
12x
sec2x(xtanx)
2sec2x
sec2x(2xtanx)
Find the dydx:
Given that, y=logtanx.
Differentiate y with respect to x using chain rule:
y=logtanxdydx=1tanx×sec2x×12xdtanxdx=sec2x=sec2x2xtanx
Hence, option D is correct.