If y=logxx , then the value of dydx is
xx1+logx
logex
logxe
Find the value of dydx:
Given,
y=logxxy=xlogx[∵logab=bloga]
Now differentiate with respect to x.
Then,
dydx=logx+x1x[∵ddxuv=u'v+v'u,ddxlogx=1x]=logx+1=logx+loge[∵loge=1]=logex[∵logab=loga+logb]
Hence, the correct option is B.