The correct option is A 2b√a2−4b2
Given common tangent is y=mx−b√1+m2,
⇒mx−y−b√1+m2=0
Given circles are
x2+y2=b2 and
(x−a)2+y2=b2
The centre and radius are
C1=(0,0),r1=bC2=(a,0),r2=b
Now, the distance from centre to the tangent is equal to radius, so
∣∣∣b√1+m2√1+m2∣∣∣=b⇒b=b
And
∣∣∣ma−b√1+m2√1+m2∣∣∣=b⇒|ma−b√1+m2|=b√1+m2⇒ma−b√1+m2=±b√1+m2⇒ma=0,2b√1+m2⇒ma=2b√1+m2 (∵m>0)
Squaring both sides, we get
⇒a2m2=4b2+4b2m2∴m=2b√a2−4b2