If y=Peax+Qebx, then prove that d2ydx2−(a+b)dydx+aby=0
We have y=Peax+Qebx [On dividing both sides by ebx
⇒e−bxy=Pe(a−b)x+Q) [On diff. w.r.t. x both sides
⇒e−bxy′−bye−bx=P(a−b)e(a−b)x ⇒e−bx(y′−by)=P(a−b)e(a−b)x
On multiplying both the sides by ebx−ax, we get:
⇒e−ax(y′−by)=P(a−b) [Againg diff. w.r.t . x both sides
⇒e−ax(y"−by′)−ae−ax(y′−by)=0 ⇒e−ax[y"−by′−ay′+aby]=0
i.e., y"−(a+b)"y′+aby=0 or d2ydx2−(a+b)dydx+aby=0