If y=(xlogex) then dydx at x=e is
1e
e
e2
Finding the derivative:
Step 1: Find the dydx:
Given that,
y=(xlogex)
Differentiate the above equation with respect to x
dydx=1(logex+x×1x)2(xlogex)∵dlogxdx=1x=(logex+1)2(xlogex)
Step2: Finding out the value of dydxatx=e:
dydxx=e=(logee+1)2(elogee)=22e=1e
Hence, B is the correct option.