Ify=sec-1((2x)(1+x2))+sin-1[x-1][x+1],thendydx=
1
x+1x-1
does not exist
none of these
Explanation for the correct option:
Step : Find the value of dydx
Given that y=sec-1((2x)(1+x2))+sin-1[x-1][x+1]
Differentiation by substitution
sincey=sec-1((2x)(1+x2))+sin-1[x-1][x+1]substitutex=tanθthen(2x)(1+x2)=2tanθ(1+tan2θ)=sin2θSince-1≤sinθ≤1⇒-1≤(2x)(1+x2)≤1Butsec-1((2x)(1+x2)isdefinedonlyatx=-1and1Sosolutiondoesnotexist.
Hence, option (C) is correct.