If y=sec-1[cosecx]+cosec-1[secx]+sin-1[cosx]+cos-1[sinx],dydx is equal to
0
2
-2
-4
Find the derivative:
Step1: Simplification of y
Here,
y=sec-1[cosecx]+cosec-1[secx]+sin-1[cosx]+cos-1[sinx]=sec-1[sec(90-x)]+cosec-1[cosec(90-x)]+sin-1[sin(90-x)]+cos-1[(cos(90-x)]=(90-x)+(90-x)+(90-x)+(90-x)=4×(90-x)
Step2: Find the dydx
y=4(90-x)
Differentiate with respect to x.
dydx=-4dxdx=-4
Hence, D is the correct option.