If y=sec-1x+1x-1+sin-1x-1x+1, then dydx=
1
0
x-1x+1
x+1x-1
Explanation for the correct answer:
Find the value of dydx:
Given,
y=sec-1x+1x-1+sin-1x-1x+1⇒y=cos-1x-1x+1+sin-1x-1x+1[∵sec-1(a)=cos-1(1a)]⇒y=π2[∵cos-1x+sin-1x=π2]
Differentiate y with respect to x, we get
dydx=0∵dconstantdx=0
Hence, the correct option is B.