If y=sec(tan−1x) then, dydx at x=1 is equal to
y=sec(tan−1x)∴sec(tan−1x)tan(tan−1x)⋅(11+x2)putx=1then(dydx)=sec(tan−11)tan(tan−11)⋅(11+12)=sec(π4)⋅tan(π4)⋅(12)=√2⋅1⋅(12)=(1√2)