If y=secx0, then dydx=
secxtanx
secx0tanx0
secx0tanx0π180
secx0tanx0180π
Explanation for the correct answer:
To find the value of dydx:
Given,
y=secx°
We know,
π radian =180°
Then,
x°=π180x
So,
y=secπ180xdydx=secπ180xtanπ180xπ180[∵ddxsecx=secxtanx]dydx=secx°tanx°π180
Hence, the correct option is C.
if y=logax , x0 then find dy/dx