If y=sin-12x1+x2+sec-11+x21-x2, then dydx=
41-x2
41+x2
11+x2
-41+x2
To find the value of dydx:
Given,
y=sin-12x1+x2+sec-11+x21-x2
This equation can be written as,
y=sin-12x1+x2+cos-11-x21+x2[∵cos-1x=sec-11x]
We know, ddxsin-1x=11-x2 and ddxcos-1x=-11-x2
Now, differentiate with respect to x,
dydx=11-2x1+x2221+x2-2x2x1+x22+-11-1-x21+x22-2x1+x2-2x1-x21+x22=1+x22-2x21+x4+2x2-4x21+x22+1+x24x1+x4+2x2-1-x4+2x21+x22=21-x21-x221+x2+4x2x1+x2=21+x21+1=41+x2
Hence, the correct option is B.