If y=sin-12x1-x2, -12≤x≤12, then dydxis equal to
x1-x2
11-x2
21-x2
2x1-x2
Finding the value of dydx:
y=sin-12x1-x2
Put x=sinθ
⇒θ=sin-1x
y=sin-12sinθ1-sin2θ=sin-12sinθcos2θ[∵cos2θ+sin2θ=1]=sin-12sinθcosθ=sin-1sin2θ=2θ=2sin-1x
So, y=2sin-1x
Differentiating with respect to x both sides:
dydx=2×11-x2=21-x2
Hence, option (C) is the correct answer.