If y=sin1+x21-x2,then dydx=
4x1-x2cos1+x21-x2
x1-x2cos1+x21-x2
4x1-x22cos1+x21-x2
x1-x22cos1+x21-x2
Explanation for the correct option:
Finding the value of dydx:
y=sin1+x21-x2
Differentiating with respect to x both sides:
dydx=cos1+x21-x2×ddx1+x21-x2
Here, we apply Quotient rule of differentiation,
dydx=cos1+x21-x2×1-x2×2x-1+x2×-2x1-x22∵ddxuv=vdudx-ududxv2=cos1+x21-x2×2x1-x2+1+x21-x22=cos1+x21-x24x1-x22
Hence, Option (C) is the correct option.