wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If y=(sin1x)2, then prove that (1x2)d2ydx2xdydx=2.

Open in App
Solution

Given: y=(sin1x)2

Differentiating w.r.t. x,

dydx=2sin1x×11x2

1x2dydx=2sin1x

Squaring both sides (1x2)(dydx)2=4(sin1x)2

(1x2)(dydx)2=4y

Again differentiating w.r.t. x

(1x2)2(dydx)d2ydx2+(dydx)2(2x)=4dydx

Dividing both sides by 2dydx

(1x2)d2ydx2xdydx=2. [henceproved]


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon