Consider the given expression.
y=sin−1[x(√x−1)−√x√1−x2]
Let y=sin−1(g(x)), where g(x)=x√x−1−√x√1−x2. Then,
dydx=dydg(x)×dg(x)dx
Now,
dydg(x)=1√1−[g(x)]2
As,
{g(x)}2=(x√x−1−√x√1−x2)2
{g(x)}2=x2(x−1)+x(1−x2)−2x√x√(x−1)(1−x2)
{g(x)}2=x3−x2+x−x3−2x√x2−x4−x+x3
{g(x)}2=x−x2−2x√x2−x4−x+x3
And,
dg(x)dx=√x−1+x12√x−1−√x−2x2√1−x2−12√x√1−x2
dg(x)dx=√x−1+x2√x−1+2x√x2√1−x2−√1−x22√x
Therefore,
dydx=√x−1+x2√x−1+2x√x2√1−x2−√1−x22√x√1−x+x2+2x√x2−x4−x+x3