If y=sin1+x21-x2, then dydx=
4x1-x2cos1+x21-x2
x1-x2cos1+x21-x2
4x1-x22cos1+x21-x2
x1-x22cos1+x21-x2
The explanation for the correct option:
The given equation is y=sin1+x21-x2.
Differentiate both sides of the equation with respect to x.
∴dydx=ddxsin1+x21-x2⇒dydx=cos1+x21-x2·ddx1+x21-x2⇒dydx=cos1+x21-x2·1-x2·ddx1+x2-1+x2·ddx1-x21-x22∵ddx(uv)=v·dudx-u·dvdxv2⇒dydx=cos1+x21-x2·1-x22x-1+x2-2x1-x22⇒dydx=cos1+x21-x2·2x-2x3+2x+2x31-x22⇒dydx=cos1+x21-x2·4x1-x22⇒dydx=4x1-x22cos1+x21-x2
Therefore, dydx=4x1-x22cos1+x21-x2.
Hence, (C) is the correct option.