The correct option is A 1√1−x2−12√x√1−x
Given that,y=sin−1(x√1−x−√x√1−x2} .....(1]and 0 < x < 1, then dydx at x=12Let x=sin A and √x=sin B; A, B ∈(0,π2)(1] can be expressed asy=sin−1(sin A√1−sin2B−sin B√1−sin2A}⇒y=sin−1(sin A cos B−sin B cos A}⇒y=sin−1(sin (A−B)}⇒y=A−B (∵A−B∈(−π2,π2))⇒y=sin−1x−sin−1√xDifferentiating w.r.t. x, we get⇒dydx=1√1−x2−12√x√1−x